Adaptive hierarchical contexts for object recognition with conditional mixture of trees

نویسندگان

  • Billy Peralta
  • Pablo Espinace
  • Alvaro Soto
چکیده

Robust category-level object recognition is currently a major goal for the computer vision community. Intra-class and pose variations, as well as, background clutter and partial occlusions are some of the main difficulties to achieve this goal. Contextual information, in the form of object co-occurrences and spatial constraints, has been successfully applied to improve object recognition performance, however, previous work considers only fixed contextual relations that do not depend of the type of scene under inspection. In this work, we present a method that learns adaptive conditional relationships that depend on the type of scene being analyzed. In particular, we propose a model based on a conditional mixture of trees that is able to capture contextual relationships among objects using global information about a scene. Our experiments show that the adaptive specialization of contextual relationships improves object recognition accuracy outperforming previous state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Mixing Hierarchical Contexts for Object Recognition

Robust category-level object recognition is currently a major goal for the Computer Vision community. Intra-class and pose variations, as well as, background clutter and partial occlusions are some of the main difficulties to achieve this goal. Contextual information in the form of object co-ocurrences and spatial contraints has been successfully applied to reduce the inherent uncertainty of th...

متن کامل

Embedded Image Coding Using Context Adaptive Wavelet Difference Reduction

It is well-known that one of the best waveletbased image compression techniques, called Wavelet Difference Reduction WDR, has both simple algorithm and comparative rate-distortion results comparing to other coders in the literature. In this paper, we propose an algorithm to enhance the performance of WDR coder in a very efficient way. The methodology is highly based on the context adaptive mode...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012